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 

Abstract—Approximation is found for the K-distribution 

probability density function. This avoids detailed calculation of 

modified Bessel functions of the second kind. The K-distribution 

is often used to model sea clutter in radar images and a simplified 

algorithm is important for the automatic detection of ships in 

radar images. The approximation is sufficiently accurate for this 

application and could significantly reduce the time required to 

process sea clutter. The methodology contributes to an 

understanding of why the K-distribution is successful in 

applications to target detection.  

 

 
Index Terms— K-distribution, detection threshold, sea clutter, 

ship detection, CFAR, SAR. 

 

I. INTRODUCTION 

HE K-distribution often describes the intensity statistics of 

radar sea clutter and can be used in the automatic 

detection of ships from satellite radar imagery. The 

technique involves the specification of a Constant False Alarm 

Rate (CFAR), which implies that a threshold of detection is set 

according to the local statistics of the clutter at each point in 

the image plane. 

 The K-distribution arises quite naturally because each area 

corresponding to a radar resolution cell in range and azimuth 

usually contains a large number of independent scatterers. In 

the complex domain appropriate to the radar I and Q signals, 

the sum of identically distributed random scatterers leads to 

two dimensional normal statistics [1]. The squared magnitude 

of the signal, which is the intensity, turns out to be 

exponentially distributed. The scatterers themselves can be 

considered as independent Bragg waves within a small region 

of wave-vector space corresponding to the radar resolution. If 

the mean squared amplitude of these waves varies across the 

sea surface, for example as would be expected from variations 

in the wind speed, then the mean of the exponential 

distribution must be randomized. When the randomizing 

probability density is assumed to be gamma distributed, the 

result is K-distributed clutter [2]; K refers to a modified Bessel 

function of the second kind. 

 The images from a Synthetic Aperture Radar (SAR) are 

often averaged, essentially in time. These are called multi-look 

images. The mean intensity within a single resolution cell is 

not likely to change over a time of a fraction of a second but 
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the phasing of the Bragg waves will be almost independent 

from look to look. Therefore the multi-looking operation 

converts the exponential distribution to a gamma distribution 

of order L, where L is the number of independent looks (which 

is usually less than the actual number of looks) [1]. When this 

is randomized using a similar gamma distribution to the single 

look case, the result is compound K-distributed clutter [3], [4]. 

 The order of the randomizing gamma distribution  is 

determined empirically. When  is very large, the randomizing 

distribution is highly concentrated around its mean and the 

effect of randomization is negligible; the overall distribution is 

gamma of order L. When  is small, the randomizing 

distribution is broad and large values of the intensity are more 

likely to occur, which increases the probability of a false 

alarm. Experiments and the analysis of sea clutter suggest that 

the mean intensity within each resolution cell is indeed close to 

gamma distributed but the theoretical justification for this is 

weak. However, it is plausible that many bell-shaped 

distributions close to gamma would suffice and yield a 

distribution for randomized clutter that would be close to 

compound K-distributed; this will be confirmed. 

 The calculation of an appropriate CFAR threshold for 

each region of an image can be implemented by determining 

the value of L from the radar and processing specifications and 

a value of  from the clutter data itself. The value of  can be 

estimated from the mean and variance of a clutter cell. The 

threshold is determined from a numerical calculation of the 

modified Bessel function and the subsequent evaluation of the 

probability distribution. Unfortunately the last of these 

operations can be a time consuming process.  Because the 

desired false alarm rates are typically very small (<< 10
-6

 per 

resolution cell), the process can be accelerated greatly by using 

an asymptotic approach.  

 

II. THEORY 

 

 Two cases are considered. The first case is that of single 

look imagery, i.e. L = 1. Here both the basic probability 

density function and the distribution are exponential; since the 

distribution can be expressed in closed form, a direct 

evaluation is possible. In the second case (where L > 1), the 

basic probability density is gamma. However, this cannot be 

integrated in closed form. Nevertheless, it is possible to find 

the randomized probability density function and then to 

integrate this to determine the overall probability distribution 

and from this the threshold. The last operation parallels the 

usual numerical approach. 

 For single look imagery, the randomized distribution 

function for the intensity, X, with unit mean is given by: 
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where  is the usual gamma function related to the factorial. 

 This can be integrated to yield a K-distribution but, to find 

an asymptotic form for large x, it is re-cast into the following 

form: 
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The argument of the exponential is now written: 
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The integrand peaks sharply when f is a maximum or when 

df/dz = 0: 
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This occurs when: 
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The positive sign is used for  > 1.0 and the negative sign for 

 < 1.0. The second derivative of f is: 
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For the values of  that are typically encountered, the 

integrand is very concentrated about exp(f) evaluated at z0. 

Thus we have: 
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 There are two possible problems. The first is when  = 1. 

This is resolved by noting that z0 = x
1/2

. The second problem is 

when  < 1 and the typical gamma function algorithm may not 

be accurate. To overcome this, the following can be employed: 
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 When L > 1, the randomized density for the intensity is 

given by: 
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Using the same approach as before we have: 
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Thus z0 is given by: 
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The positive sign is used when  > L and the negative sign 

when  < L; when  = L, then z0 = x
1/2

.  The final result is 
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III. RESULTS 

 

 In practice a Probability of False Alarm (PFA) is specified 

and the threshold of detection is calculated as a multiple of the 

mean. A comparison was made between an accurate 

calculation of the thresholds (using the K-distribution based on 

modified Bessel functions of the second kind; see Appendix) 

with approximate results for PFAs of 10
-9

 and 10
-6

. The 

calculation required an evaluation of the probability 

distributions, which for L = 4 were found by numerical 

integration of the probability density functions. Some of the 

results are shown in Table I.  With a PFA of 10
-9

 and when  > 

0.1 and 1  L  100, it has been verified that the accuracy of 

the approximation is better than 0.1%.  

 

TABLE I 

THRESHOLDS OF DETECTION 

 

 L = 1 L = 4 

PFA  Accurate Approx. Accurate Approx. 

10
-9 

0.5 214.7 214.8 91.59 91.62 

10
-9 

5.0 47.49 47.50 18.796 18.800 

10
-9 

50.0 24.24 24.24 8.841 8.842 

10
-6 

0.5 95.43 95.55 46.40 46.43 

10
-6 

5.0 25.69 25.70 11.263 11.267 

10
-6 

50.0 15.337 15.338 6.128 6.128 

  

 

IV. CONCLUSIONS 

 

 Approximate forms of the K probability distribution (L = 1) 

and for the probability density function (L > 1) have been 

found. These appear to be sufficiently accurate for estimating 

the thresholds for the detection of ships over the range of sea 

clutter parameters likely to be encountered. 

 The calculation is much simpler than a detailed calculation 

involving modified Bessel functions of the second kind and, 

for realistic PFAs, is accurate to within better than 0.1%. In 

C++ or C# and apart from the gamma function, the computer 

code for the probability density needs no loops and comprises 

less than 18 lines. Therefore the approximation should be 

useful in reducing the time required to process SAR image 

data for automatic ship detection. 

 The methodology involves replacement of the integrand by 

an approximation that includes a generic Gaussian component. 

Because the thresholds for the approximate calculation are 

very close to those derived by an accurate evaluation of the K-

distribution, the details of the randomizing distribution are not 

critical and a variety of smooth, well-behaved randomizing 

distributions will give similar results. This helps to explain 

why the K-distributions are so useful in modeling clutter. 
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APPENDIX 

 

 The integrals involved in the K probability density and 

distribution can be evaluated using a relation from [5]: 
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For the case of the distribution with L = 1, we have: 
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This can be converted into the form of (13) using the 

substitution: 
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It can easily be verified that this tends to one as x goes to zero 

and to zero as x goes to infinity. 

 For the case of multi-look imagery, we have for the 

probability density: 
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By similar reasoning it can be shown that: 
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